Машинное обучение и анализ данных, 30 ноября

Стажёр-аналитик Яндекса и преподаватель Летней компьютерной школы. Учится на кафедре математических методов прогнозирования ВМК МГУ и в Школе анализа данных. Преподает машинное обучение в ШАДе

Все чаще и чаще мы сталкиваемся с необходимостью выявлять внутренние закономерности больших объёмов данных. Например, для распознавания спама необходимо уметь находить закономерности в содержании электронных писем, а для прогнозирования стоимости акций — закономерности в финансовых данных. К сожалению, выявить их «вручную» часто невозможно, и тогда на помощь приходят методы машинного обучения. Они позволяют строить алгоритмы, которые помогают находить новые, ещё не описанные закономерности. Мы поговорим о том, что такое машинное обучение, где его стоит применять и какие сложности могут при этом возникнуть. Принципы работы нескольких популярных методов машинного обучения будут рассмотрены на реальных примерах.