Анализ неявных предпочтений пользователей

Анализ неявных предпочтений пользователей, выраженных в переходах по ссылкам и длительности просмотра страниц, является важнейшим фактором ранжирования документов в результатах поиска или, например, показа рекламы и рекомендации новостей. Алгоритмы анализа кликов хорошо изучены. Но можно ли узнать что-то ещё об индивидуальных предпочтениях человека, используя больше информации о его поведении на сайте? Оказывается, траектория движения мыши позволяет узнать, какие фрагменты просматриваемого документа заинтересовали пользователя. В докладе речь пойдёт о методах сбора данных и алгоритмах анализа поведения пользователя по движениям мыши, а также о применении этих методов на практике. Они позволяют существенно улучшить формирование сниппетов (аннотаций) документов в результатах поиска. Будут представлены свободно доступный программный код, а также коллекция данных о поведении пользователей с привязкой к поисковому запросу. Мы надеемся, они вдохновят исследователей на создание новых методов анализа неявных поведенческих сигналов. Работа с описанием этих алгоритмов была отмечена дипломом «Best Paper Shortlisted Nominee» на международной конференции ACM SIGIR в 2013 году.